2023

ADVANCED BUSINESS MATHEMATICS — HONOURS

Paper: DSE-5.1 AH

(Module - II)

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.

- 1. (a) Evaluate: $\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} 1}{x}.$
 - (b) The function $f(x) = \frac{x^3 8}{x^2 4}$ is undefined at x = 2. Redefine the function so as to make it continuous at x = 2.
- 2. (a) Evaluate : $\int_{-1}^{0} \frac{1+x}{1-x} dx$.
 - (b) Evaluate: $\int \frac{dx}{(x-3)\sqrt{x+1}}.$ 5+5
- 3. (a) If $f(x) + 2f(-x) = x^2$, show that f(3) = 3.
 - (b) If $y = 2x^3 + 3x^2 36x + 7$, find the values of x for which $\frac{dy}{dx} = 0$.
- 4. (a) Solve by Cramer's Rule: 2x y + 3z = -2, 3x + 2y + 3z = 9, x + 2y z = 9.
 - (b) Show that the matrix $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$ is orthogonal. Hence, find A^{-1} . 5+5

5. (a) Evaluate :
$$\int (2x+1)\sqrt{4x^2+4x+5} \, dx$$

(b) If
$$x = t^2 + 2t$$
, $y = t^2 - 2t$, find out $\frac{d^2y}{dx^2}$ at $t = 1$.

6. (a) Without formal expansion prove that $\begin{vmatrix} x & y & 0 \\ 0 & x & y \\ y & 0 & x \end{vmatrix} = x^3 + y^3.$

(b) Prove that
$$\left(1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$$
 is a factor of $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+y & 1\\ 1 & 1 & 1+z \end{vmatrix}$.

- 7. (a) The price per unit p(x) at which a company can sell all that it produces is given by p(x) = 300 4x and that cost function is c(x) = 300 + 52x, where x is the number of units produced. Find x so that profit is maximum.
 - (b) Find the area bounded by straight lines 3x 2y = 6, 2x + y = 10 and x axis. 5+5
- **8.** (a) Let A and B be two matrices such that $AB = \begin{pmatrix} 1 & 3 \\ 4 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix}$. Find out A.
 - (b) If $P = \begin{pmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{pmatrix}$, then show that $P^2 = P$ and hence find matrix Q such that $4P^2 2P + Q = Q$,

where O is the zero matrix of order 3.

5+5